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INTRODUCTiON

Paul S. Jensen

The work carried out under this supplemental effort to the
general study on the sensitivity of optimized structures was
divided into three tasks:

1. Enhance the virtual memory simulator program VMSYST

that supports the sparse matrix processor.
Specifically, improve its efficiency for handling very
large records and reduce its overhead costs for small
records.

2. Comparatively evaluate the profile and generalized wave

front algorithms for processing large sparse matrix

problems arising in structural analysis.

3. Implement a local, constrained optimization algorithm

based on the method of augmented Lagrangians and
evaluate it for the optimization of stiffened panels.

These three tasks are all supportive to the general problem of

structural design and optimization. They are sufficiently
different, however, to permit treatment as three autonomous

efforts. Detailed discussions of the tasks are provided in the

separate articles in this report. An overview of the project
, :and summaries of the results of the tasks are provided here.

Structural optimization is carried out in a sequence of

steps. For each step, the following major computational tasks

are carried out:

1. The optimizer program produces a new structural
configuration based on the information available from

the previous steps. Presumably. this new configuration
is an improvement to the previous ones in the sense

that it meets the constraint requirements and improves

the objective function, e.g., reduces the overall
weight. Often this task is 3one by a human analyst.

-1 --
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2. The structural analysis program analyzes the new
configuration produced by the optimizer with regard to
the constraint and objective functions.

It is clear that each step tends to be rather costly for complex
structures because it requires a detailed analysis of a
structural configuration. Consequently, there is a strong
incentive to minimize both the total number of steps required
and the cost of each step. The number of optimization steps is
controlled by the "optimizer" (optimization program) and the
cost of each step is determined by the "structural analyzer".
The first two tasks of this project relate to improvements in
the structural analyzer and the third task concerns the
optimizer.

VIRTUAL MEMORY SIMULATOR

Although a geat deal of progress in general sparse matrix
processing has been achieved over the past decade, one
fundamental difficulty has inhibited wide acceptance of these
new results for structural analysis applications. That
difficulty centers on the management of the vast quantities of
data that are generated. The traditional profile methods used
for structural analysis have a data structure that permits
simple management techniques relative to those required for the
newer general algorithms. The most attractive data management
approach for the new algorithms is based on the concept of word
addressable virtual memory. Since many of the computers used
for structrual analysis do not nu;e virtual memory hardware, the
only option available is to simulate virtual memory by software.

Prior to this study, a comprehensive system of software
modules was developed to efficiently manage large quantities of
data in the spirit of virtual memory systems. In this study,
exLensive enhancements to that system were made including:

1. Reduced overhead costs by delayed validity checking,

2. Direct (unbuffered) transfer of very large records and

3. Dynamically variable operational characteristics that,
among other things, permits release of buffer core area
when not needed.

SPARSE MATRIX PROCESSING

The profile (variable band) sparse matrix processing
techniques traditionally used for structural analysis have
proven reasonably satisfactory, especially in light of efficient
preprocessing algorithms that automatically produce good

-2-



equation oderings that yield tightly banded matrices. The
objective of this task was to compare a good available profile
algorithm (including preprocessor) with a new algorithm based on
a generalized wave front technique that was developed under
previous Air Force support.

Previous work with that algorithm (called SPSYST) revealed
several aspects that needed further work. Unfortunately, that
work, which is being carried out by Dr. J.K.Reid at AERE Harwell
in England, was not completed in time for this study.
Consequent!., the tests were made with an old version of SPSYST.

Besides completing a number of representative tests, a
significant accomplishment of this task was the development of a
convenient host program, called SPARTA (SPARse Test Algorithm).
It is designed to facilitate tests of this nature and, more
generally, to interface SPSYST with a variety of general purpose
structural analysis programs. It is anticipated that SPARTA
will be of considerable use in future research studies and
production applications.

Five structural problems that have been analyzed previously
by engineers at Lockheed Misseles and Space Co. (LMSC) were used
for this study. The profile method produced the less costly
results for the relatively simple problems (as might be
expected) and SPSYST did better for certain complex problems.
Generally, it appears that the new algorithm is quite promising.

OPTIMIZATION

The general structural optimization problem has a number of
characteristics that make it particularly challenging. As
briefly mentioned earlier, the costs of obtaining pertinant
information from the structural analyzer are generally quite
large. Consequently, the optimizer must use the information it
gets very effectively. An even worse characteristic is that the
constraint functions (e.g., buckling load) are occasionally not
differentiable with respect to the design variables. In any
case, important gradients of these functions are not available
except by finite difference approximation.

Because of the limited funding available for this study, the
only tests run involved an optimizer that was developed and
partially implemented previously. That optimizer, called ALMIN4
(Adaptive Lagrangian MINimizer), incorporates a number of recent
innovations in optimization theory and appeared to have
considerable promise for the structural optimization problem.
Basically, the objective function is augmented with penalty
terms representing the constraint functions. These terms are
small when the constraints are satisfied and grow as the
constraints become violated. The balance between the penalty
terms and the objective function is established by weighting

' - 3 -



factors applied to the penalty terms. A robust method for
determining the weighting factors has not yet been developed for
ALMIN.

An implementation of ALMIN was completed and a variety of
test problems were run. Although operational, the new algorithm
is not suitable for production applications in its current form.
A number of critical decision processes are presently carried
out using ad hoc heuristics that are neither reliable nor always
efficient. Examples of these decision processes are: (1) When
to reinitialize the approximate Hessian matrix, (2) What
technique to use for increasing the penalty function weights and
(3) How to approximate the gradient functions.

Our general feeling is that a number of avenues for
considerably improving upon the present technique exist and,
because of the substantial analysis costs involved, should be
pursued. Some specific areas of interest are:

1. Careful attention to the finite difference techniques
used to approximate the gradients of the constraint and
objective functions must be given,

2. Innovative utilization of the information available
from the structural analyzer (that is not typically
used by optimizers) must be found. An example of such
information is the eigenvector associated with the
buckling load (an eigenvlaue).

3. Incorporation of recent ideas that exploit the
properties of the trajectories of penalty and barrier
function methods to overcome the problems associated
with the penalty weights.

-4



V -

-11p -F -

A VIRTUAL MEMORY SIMULATOR

Paul S. Jensen

ABSTRACT

A software package called VMSYST for simulating virtual
memory on a variety of computing systems is described. It
utilizes the popular LRU (Least Recently Used) paging policy,
with variable page and page buffer sizes. Except for the
input/output routines, the package is written in standard
FORTRAN 66 for transportability. A gauche FORTRAN version of
the input/output routines is included for simple testing but is
not recommended for production work.

VMSYST was designed to support a sparse matrix package based
on a generalized frontal scheme. However, it has gained
popularity for use in other applications such as text library
management and as a general purpose local data manager for
"number crunching" programs. It is currently operational on CUC
6000 and CYBER systems, UNIVAC 1100 series computers and the VAX
11/780.
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1. INTRODUCTION

One of the biggest thorns in developing programs to operate

on massive quantities of data (text or numerical) is data
management. The fact that FORTRAN has provided a reasonably
effective input/output capability has undoubtedly been an
important factor in its survival over the years in the face of
important competitors such as ALGOL. Never-the-less, the
FORTRAN input/output system has traditionally been serial
oriented and has proven inadequate for serious computational
work. The new FORTRAN 77 standard has substantially improved
the input/output capabilities inherent to the language and
future standards may one day completely obviate the need for
utilities such as the system discussed here. For the present,
however, versatile subroutine packages for simplifying data
management fill an important need in production computation.

There is a wealth of literature on virtual memory systems
describing a broad base of experience gained over the past two
decades. Good general discussions may be found in [1,3 and 8].

Some rather discouraging results have been reported in [3 and 7]
for example, and encouraging results have appeared in [5,6 and
8]. Our experience indicates that the convenience of virtual
memory is an extremely attractive feature and that reasonable
efficiency can be achieved for a fairly broad range of problems.
Some (variations in page size, resident set size, etc.) is
advantageous for many applications but is not essential.

The system described here is fairly typical except for one
important innovation germane to large records. When the size of
a record is several times the size of a basic page, much of the
record is transferred directly instead of through the page
buffer. There are other innovations germane to numerical
processes such as limited arithmetic operations directly in the
page buffer, but these are primarily convenience features.
Unfortunately, some jargon needs to be introduced in order to
facilitate the discussion. New terms are defined in the text
and again in the Appendix along with some additional interesting
terms. Most of the jargon has been taken from various
references and should be fairly standard.

2. DESIGN HIGHLIGHTS

The unit of information (datum) managed by VMSYST is the
word. The size of a word, unfortunately, varies among computers
and requires specification for each computer. This -~d other
specifications pertaining to the nature of the data in "virtual
memory" is retained with the data in a special virtual hfader.
Physically, the header is retained in the first 25 words (f the
storage file holding the data. Thus, the header can usually be
contained in the first sector of a random access disc storage
device. When VMSYST is provided a file that is alleged to hold

-7-



the contents of a VM (virtual memory) , it immediately reads the
header and adjusts various internal parameters accordingly.
When VMSYST closes a virtual file, it updates the header to
reflect the most recent activity. This and certain other
processes prevent the use of serial storage media for direct
virtual storage.

Except for the header, all data retained on a VM (virtual
memory) file appears to an application program as word
addressable information. The number of storage locations
available depends upon the file size. The sequence of allowed
addresses (usually starting with 1) is called the virtual
address space. For management purposes, it is partitioned into
fixed-size pages. When a relatively small segment of data is
required, the page's holding it are moved to the resident set
(if they are not there already) and the segment is copied out
from there. The resident set occupies a user specified region
in common called the p buff r. When a large segment is
required, each page holding an end of the segment is paged in
through the resident set as above (unless it holds segment data
exclusively, i.e., the segment is Page aligned). The rest of
the segment, however, is transferred directly to (or from) mass
storage.

There are two nearly identical versions of VMSYST. The B
version holds the resident set in FORTRAN blank common and the L
version holds it in labelled common /VMBUFT/. The position of
the resident set is the only difference between the two
versions. For either version, a user may adjust the size and/or
position of the page buffer in common from time to time during
the execution of his program in order to optimize the efficiency
of the overall program. He normally specifies the starting
location, page size and available buffer space and VMSYST
determines how many active pages can be accomodated and how much
memory space is actually required. The determination of these
parameters is nontrivial because the page buffer is used to hold
a Page table as well as the resident set.

Some special operations such as scaling (multiplying by a
constant) a segment in virtual memory containing numerical data
are also provided. The arithmetic specified by such operations
is carried out directly in the page buffer area of main storage.
Consequently, the entire segment is paged into the resident set
for such operations regardless of its size.

-8-
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3. VIRTUAL MEMORY OPERATIONS

The virtual memory operations are presented here as

subroutine names (more precisely, subprogram entry points).
They are normally called from a FORTRAN driver or application
program. The general format for these operations is:

VMxxxx(ARGl,ARG2,ARG3,ARG4),

where xxxx specifies a particular operation as discussed below.

There are three classes of virtual memory operations, viz.:

TRANSFER, ARITHMETIC and ADMINISTRATIVE. The transfer
operations are the easiest to understand and the most frequently
used. Three basic transfer operations are defined, viz.: GET,
PUT and COPY. There are also three arithmetic operations, viz.:

SET, ADD and SCL, that are a bit peripheral to "normal" I/O
operations but provide a convenient mechanism for doing limited
arithmetic right in the VM buffer area of main storage.

The administrative operations facilitate file management

(open, close, etc.), resident set size adjustment, parameter
value adjustment and the display of certain operational

statistics. They are the most complicated, least interesting
and of :-e greatest number.

3.1 TRANSFER OPERATIONS

The transfer operations that move data between mass storage
and main (RAM) memory are:

VMGETR - Get real data from mass storage
VMGETI - Get integer data from mass storage
VMPUTR - Put real data in mass storage
VMPUTI - Put integer data in mass storage

These are in the form of FORTRAN subroutines called in the

following format:

CALL VMGETR(R,N,F,L)

where R is an array of dimension N in main memory (RAM),
N is the number of words to be transferred,
F is the mass storage file holding the VM data and
L is the location of the data in virtual memory.

msThere is one transfer operation for copying data from the
mass storage of one virtual memory to that of another. It has
the form

CALL VMCOPY(FFROM,LFROM, N, FTO,LTO, R,NR)

- 9 -
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where FFROM and LFROM are the file and virtual location numbers
for the source virtual memory,

N - is the number of words to be copied,
FTO and LTO - are the file and virtual location numbers

for the destination virtual memory,
R - is an array in RAM for holding temporary

data (It should be as large as possible),
NR - is the size of R.

Of course, data must have previously been put in (FFROM, LFROM)
but it does not matter about (FTO, LTO).

3.2 ARITHMETIC OPERATIONS

The arithmetic operations that facilitate a limited amount
of computation in the VM page buffers are:

VMSETR(C,N,F,L) - Set N values in VM to constant C,
VMSCLR(C,N,F,L) - Scale N values in VM by constant C and
VMADDR(C,R,N,F,L) - Add C*R to N values in VM, where R

is a real vector of length N.

Following the conventions for this system, the final R in each
name indicates real arithmetic and arguments C and R must
represent real data. As with the transfer operations, arguments
F and L designate the VM mass storage file and virtual location
of the N data items in VM. The results of the arithmetic
operations are always left in VM.

3.3 ADMINISTRATIVE OPERATIONS

Unfortunately, there are a number of administrative
operations that must be included to establish VM files,
initialize the system, handle error (hardware of course)
conditions and communicate parameter settings and operational
statistics. A summary of these operations follows:

VMDACC - Access a virtual file using default specifications
VMDEST - Establish a virtual file using default specs.
VMINIT - Initialize the VMSYST operational parameters
VMOPEN - Open a VM mass storage file (old or new)
VMCLOS - Close a VM mass storage file
VMACC - Change type of file access (GET, PUT or BOTH)
VMSTAT - Display key operational statistics
VMHDR - Fetch and (optionally) display the VM header
VMINQ - Inquiry to obtain general parameter information
VMFINQ - Inquiry to obtain file parameter information
VMPINQ - Inquiry to obtain page table information
VMMOD - Modify the operating characteristics (page size,

buffer size, etc.)
VMERRH - Define I/O error handling procedure

10
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3.3.1 INITIALIZATION

The simplest way to establish or gain access to a virtual
file is to use VMDEST or VMDACC, both of which prompt the user
for an external file name, and then initialize and open the file
(see VMINIT and VMOPEN below). VMDEST also prompts the user for
a title (up to 48 characters) to be inserted in the virtual file
header. Both routines have one argument FILNO, e.g.,

VMDEST(FILNO)

which is the integer file reference number returned for use in
subsequent VM operations.

In sophisticated applications, it is often desireable to
exercise greater control over the initialization and file
opening processes. In such cases, the first operation must
always be VMINIT. It is important that it is first and that it
is executed only once. The initialization routine assumes that
the calling program has established a page buffer area in
FORTRAN common (blank common for version B or labeled common
/VMBUFT/ for version L). The typical form of the buffer
statement in the users calling program is

COMMON /VMBUFT/ VMBBBB(size)

where size is chosen to be the default (See Appendix) or that
value given in LIST(3) below. The name VMBBBB can be anything
that does not conflict with other variable names used in the
calling program. In addition, two symbiont definitions must be
established in labelled common

COMMON /NITNOT/ NIT,NOT

where NIT is the input symbiont, usually fortran unit 5, and NOT
is the output symbiont, usually fortran unit 6.

The simplest (default) form of the initialization operation

is

VMDFLT.

VMDFLT establishes a default page buffer in labled common, sets
symbiont parameters and initializes VMSYST by calling VMINIT(O).

For flexibility, however, a user may specify up to 9
initialization parameters in order to satisfy particular
requirements by using the form

VMINIT(LIST)

* -11-
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where LIST is an integer list of initialization parameters. In
this case, the calling program must establish the page buffer
and the symbiont parameters. The items in LIST are interpreted
as follows:

1. Number of LIST items provided. If LIST(1) < 2,
internal default parameters are used.

2. Index of the first word of the page buffer in the

buffer common area (default = 1)

3. Length of the buffer area (beyond index LIST(2))

4. VM page size

5. Page capacity of buffer area

6. If LIST(6)=0, make reasonable adjustments if innocuous
inconsistencies exist in the LIST data, otherwise abort
if an inconsistency is found.

7. Temporary mass storage unit number to be used for
holding extensive operational statistics. If this
information is not required (normal case) set
LIST(7) = 0.

8. Threshold length (in pages) of records for which the
buffered mode of data transmission will be used.
Portions of longer records will be transmitted directly
when possible.

9. Maximum number of VM files to be opened for this

application (default = 8).

10. NumDer of rows in the page table.

Specification of items 8-10 is not recommended, i.e., LIST(l)
should be < 8. Any of the above items may be set to 0 in order
to cause the internal default value to be used. The actual
parameter values used for the initialization process are
returned in array LIST for the users edification.

3.3.2 FILE OPERATIONS

* The second VM operation to be used in any application must
be the file open operation VMOPEN. It is repeated once for
every VM file (max. 8) to be opened and precedes any other
operations on the file. Corresponding to each VMOPEN operation
there must be a VMCLOS operation which is the last operation on
the file. However, a closed file may be re-opened if necessary
but it must ultimately be closed.

- 12 -
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"he file operations are the least portable of the system
beca 'se they involve peculiarities of the host computer. The
objective in VMSYST has been to implement those peculiarities in
a relatively small I/O program system written in a suitable
language (assembly language in some cases). An overview of this
system is provided in Section 5. Files are estab2ished by the
following three administrative operations that utilize the
general I/O system:

VMOPEN(NAME,NO, PARAMS)
VMCLOS(NO)
VMACC (NO,TYPE)

where: NAME is an alpha-numeric file name. See Section 5.1
or

(2] for the format of NAME. If it is a string
of 1 or more blanks, a default name will be
generated.

NO is a file number assigned by VMOPEN. It is used
for all subsequent references to the file. The
user can affect the internal unit number used
by presetting NO as follows:

NO > 0 Use FORTRAN unit NO
NO - 0 Use internal default (18,17,...)
NO < 0 Set LDI --NO (See Section 5.1)

In all cases, the final value of NO is not
necessarily related to the FORTRAN unit number.

PARAMS is an integer vector of descriptive file para-
meters interpreteu as follows (also see
Section 5):

1 Equipment type
Tape ........ -2 or -1,
Disc ... ... 0, 1 or 2
Large core .. 3

2 Permanency
Temporary ......... 0 or 1,
Existing file ..... 2,3 or 4,
New file .......... 5,6, ..., 12

3 Capacity in words (if zero, use internal
default)

4 PRU (physical record unit) size in words. If
PARAMS(4)=0, the physical sector size of the
storage device will be used. The PRU size
must be a multiple of the sector size.

5 Type of access 0 - BOTH get and put,
1 - GET only or,

-13-
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2 - PUT only

6 No. of words in the title (max. 12)

7,8,... Title for file header (4 char/word, right fill)

TYPE is the type of access (equivalent to PARAMS(5))

A typical example of VMOPEN for a computer with a 4 character
word length would have NAME dimensioned 3 and set to

NAME = ('TYPICAL*VMF ') or (4HTYPI,4HCAL*,4HVMF

Integer vector PARAMS must be dimensioned 6 and could be set to

PARAMS = (0, 0, 0, 0, 0, 0)

in order to establish a new, temporary disc file of default
capacity and PRU size with access type BOTH. The internal I/O
routine attempts to determine the PRU size by inquiry to the
system monitor program. If this inquiry capability is not
available on a particular computer system, the user must provide
the PRU size for new files. If an existing file is being
referenced, items PARAMS(3) and PARAMS(4) will be replaced by
the values found on the VM file header.

Once all necessary information has been placed on a VM file
(via VMPUTx), it is often helpful to protect the file from being
written on accidentally by the access operation

VMACC(FILE,1).

Of course, write access can always be restored by the access
operation with second argument of 0. Write only access
(argument 2) is seldom used.

3.3.3 INQUIRY OPERATIONS

There are five operations provided for obtaining internal
information maintained by VMSYST. For simple applications of
VMSYST, these operations may be ignored for they have no effect
other than to provide information. They have the following
form:

VMSTAT - Print operational statistics
on FORTRAN unit 6

VMHDR(FNO,HDR) - Return file header information
VMINQ(INFO,N) - Return operational parameters
VMFINQ(FNO,FINFO,NF) - Return file information
VMPINQ(PNO,PINFO,NP) - Return page information

where INFO is a vector of length N in which the same
information discussed in Section 3.3.1 for
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argument LIST of VMINIT is returned,

FNO is the VM file number,
HDR is a 25 word integer array for header data
FINFO is a vector of length NF in which the

file information is returned,
PNO is the buffer page number,
PINFO is a vector of length NP in which the

specified column of the page table is
returned.

In addition, there is a separate, executable program called
VMCHK that facilitates checking and scanning the contents of a
previously established virtual file. VMCHK is a conversational
program that provides the user with a number of simple commands
for displaying the header, the extent (number of virtual
locations in which data has been stored), and selected contents
in a variety of formats.

VMSTAT

The most commonly used inquiry operation is VMSTAT. It may
be invoked at various points in an application program in order
to display paging and I/O information. The form of the output
(FORTRAN unit 6) is illustrated in the following example.

SUMMARY OF 1-0 ACTIVITY

INPUT OUTPUT TOTAL INPUT OUTPUT TOTAL
ACCESSES ACCESSES ACCESSES VOLUME VOLUME VOLUME

38 29 67 2133 1827 3960 VIRTUAL
12 9 21 1421 1249 2670 PHYSICAL

PAGING ACTIVITY

MISSES HITS AV SEARCH AV SEARCH PAGES BUFFER
PER MISS PER HIT SIZE

17 43 0.54 1.02 20 17920

The information is reasonably self explanatory. A page HIT or
MISS means that the referenced page was resident or nonresident.
The search refers to how many buffer pages had to be checked in
order to find a desired page or determine that it was not
resident. Often no search is required due to the classification
scheme discussed in the Section 4.

VMHDR

If the negative value of the file number, i.e., CALL
VMHDR(-FNO,HDR), is specified, then VMHDR will display the

~W~L7...,.15
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header information in a reasonably attractive fashion as well as
providing the actual data in array HDR. The actual arrangement
of the data in HDR is subject to change, and is not appropriate
to describe here (this information is documented in the
subroutine). It contains a title for the file, the date and
time it was established, the next free virtual and physical
address, the file capacity, the computing machine on which it
was established, and some other uninteresting data.

VMFINO and VMPINO

VMFINQ and VMPINQ are only needed in very unusual
circumstances and are of little concern to the average user.
Thus, the reader is invited to skip this subsection unless he
has masochistic tendencies.

Referring to the operation formats above, only the amount
(NF or NP) of information requested is returned, up to the that
available. The value of NF or NP is adjusted to the amount
available if it is initially larger in magnitude. NF or NP may
be set negative in order to have the requested information
printed out on FORTRAN unit 6 by VMFINQ or VMPINQ. The specific
items of information returned by VMFINQ are:

1 Number of PRU'S (sectors) per virtual page
2 Current file position (PRU'S)
3 Next free position (PRU'S)
4 File capacity (words)
5 PRU size (words)
6 Access: 1 - Read, 2 - Write, 0 - Both
7 Logical device index (See Section 5)
8 Next free virtual address (words)

9-12 File name (4 word character string)

The specific items of information returned by VMPINQ are:

1 Index of next older buffer page of this class
2 Index of youngest buffer page of class PNO
3 64*(Virtual address) + (File no.) of this page
4 (Alter)*(File PRU address of this page), where

Alter=-l if resident page contents match the mass
storage copy

=+I otherwise
5 Index of next younger buffer page of this class
6 Indicator of when this page was last referenced

3.3.4 MODIFICATION AND ERROR HANDLING

The operations discussed in this section are of even less
interest to the casual user than the inquiry operations of the
previous section. They are included only for the benefit of

1 - 16 -
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ardent enthusiasts that wish to do fancy stuff. One such voodoo
operation is dynamically changing the operational
characteristics of VMSYST occasionally in order to cut computing
costs by a few cents (or dollars in some cases). For example,
if an application can be partitioned in phases wherein some are
I/O bound and some are compute bound, then it may be worthwhile
to use a large page buffer during the I/O bound phases and to
shrink it (freeing up valuable memory space) during compute
bound phases. This type of dynamic modification is accomplished
by operation

VMMOD(LIST)

where array LIST plays precisely the same role as it did for the

VMINIT operation discussed in Section 3.3.1.

In the event of some unexpected I/O error, the I/O
management system used by VMSYST indicates what the problem is
and then calls the subroutine

VMERRH(SOURCE,TYPE)

where SOURCE is the name (six or fewer characters) of the VMSYST
subroutine last activated and

TYPE is the (integer) error type interpreted as follows:
1 Device index out of range
2 Device not declared
3 Device not attached (activated)
4 Non-existent file or record index
5 Mass storage address out of range
6 Zero or negative record size
7 Attempted read from an unreadable device
8 Device overflow (exceeded capacity)
9 Attempted write on an unwritable device

10 Weird error, check STATUS word
11 Requested facility is unavailable
12 A stupid request was made, e.g., free

an undefined file

At the time of this writing, VMERRH simply prints the arguments
(SOURCE, TYPE) and the VMSYST file table (see VMOPEN) and aborts
the run. A bold user may write his own error handling version
of VMERRH if that is his forte.

-17-



4. PAGING POLICY

As mentioned earlier, the basic LRU (Least Recently Used)
paging policy is used in VMSYST. In this section we discuss the
implementation of that policy in some detail.

4.1 PAGE TABLE

The page buffer provides storage for a number m (say) of
pages and an area for a page table. We shall refer to the page
spaces in the buffer as buffer page and shall use b
(0 < b < m+l) to indicate the b-th buffer page. At any time
during a program execution, buffer page b will normally be
holding some active resident page r (say) form virtual memory.
The b-th entry in the page table is used to hold some
descriptive information pertaining to resident page r. We
discuss that information next.

It is clear that whether or not a certain page p in virtual
memory is resident has to be ascertained from the page table.
One could look at each entry in the page table until either a
reference to p is found or the table is exhausted. However, if
we assign a class number to each page given by

class(p) = p mod m + 1,

then we can reduce the search effort considerably. For each
page class c (say), we keep a list of the resident class c
pages. Then the only page table entries that need to be
searched are those referring to class c pages. Thus, this
device reduces the search overhead costs.

When it comes to swapping out the LRU (Least Recently Used)
page, the page table has to indicate which buffer page is
holding it. If one maintains a list that indicates the order in
which the active pages have been referenced, then the LRU page
is simply the one at the end of the list. However, the effort
required to maintain such a list seems unwarranted and so we
simply record the current time (virtual memory reference number)
in the page table entry for each buffer page reference. The LRU
page must then be determined by a search.

For convenience, let
b = The buffer page number,
r = The number of the resident page held in b,
c = The class number of r and
m = The page capacity of the page buffer.

Then we require the following information for entry b in the
page table, where 0 < b < m+l:

1. The virtual address of the resident page r
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2. The location of the copy of r in mass storage (if it
exists)

3. Flag indicating if the active copy of the resident page
is the same as the copy in mass storage (if one exists)

4. The most recent time the page in this buffer position
was referenced

5. Number of the . Lfer page holding the next "younger"
class c resident page (if any)

6. Number of the buffer page holding the next "older"
class c resident page (if any)

7. The youngest class b resident page (if any are
resident)

For flexibility, we permit several VM files to be used
simultaneously with a common page buffer. Thus, a file number
is combined with the virtual address of the page (item 1) in
order to resolve the ambiguity. It could have been incorporated
with the mass storage location (item 2); however, the former
choice permits page table searching with just one compare item
(a generalized virtual address) rather than two (virtual address
and file number). For economy of implementation, items 2 and 3
are combined by using the sign for the flag item.

4.2 DYNAMIC PAGE MODIFICATION

Applications frequently can be partitioned into logical
phases, some of which require extensive I/O operations and
others of which are compute bound with little or no I/O.
Consequently, it makes sense to permit the dynamic variation of
the main memory space used for virtual memory buffering, i.e.,
the resident set size, accordingly. A reasonable approach to
this is to lump both the page table and the page buffer into the
same FORTRAN array and place it in "COMMOr". Putting it in
blank common is convenient when the space is to be used in a
compute bound phase, but jeopardizes the sanctity of the page
buffer with respect to inadvertent over-write.

It appears that some users are happy to take the risk of
damaging the page buffer in exchange for the convenience of
having it in blank common whereas others would prefer to not be

* .4+ troubled with that concern. Consequently, two versions of the
system are currently maintained, differing only in the placement
of the buffer area. The version having the page buffer in blank
common is called the B version and the other, called the L
version, holds the buffer table in labelled common /VMBUFT/.

-19-
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I 5. I/0 SYSTEM

The i/O system used by VMSYST is a set of FORTRAN callable

subroutines developed by Felippa [2] at Lockheed's Palo Alto
Research Laboratory. This set of subroutines, collectively
called DMGASP, interacts directly with the operating system of
the host computer in order to carry out a variety of file
manipulation operations. Versions of it have been completed for
Univac 1100 series computers, CDC CYBER computers (NOS and SCOPE
operating systems) and the DEC VAX 11/780 computer (VMS
operating system). Early versions of the code had to be written
in assembly language but a recent version in FORTRAN 77 has been
successfully developed.

The operations that DMGASP provides in support of VMSYST are

briefly described in this section. For a complete and up to
date discussion, the reader must consult (2]. The presentation
here will barely suffice for the construction of a simplified
version of DMGASP in order to permit use VMSYST without having
DMGASP.

5.1 BASIC OPERATIONS

The format of the basic I/O (data management) operations is

as follows:

DMxAST(L,M,N)

where x can be any of the letters DFPWRHEL. These are inter-

preted as follows:

D - Declare (assign, attach, activate, open) a file

F - Free (release, deactivate, etc.) a file
P - Position a file to a sector (PRU) location
W - Write on a file starting at its current position
R - Read from a file starting at its current position
H - Establish error handling procedure
E - Write an end-of-file mark (pertains to tape file)
L - List internal operational information

The arguments serve varying purposes depending upon which
operation is involved. For most of the operations, L is the
file index called the logical device index (LDI). The
equivalence of this index to a named file is established when
the file is declared (via DMDAST). For the read and write
operations, the second and third arguments M and N are the data
array and its size. Thus, basic I/O operations can be
illustrated as follows:

CALL DMDAST(FILE, NAME, ORGN) ; Declare a file
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CALL DMPAST(FILE, 0, 0) ; Position it to beginning

CALL DMWAST(FILE, ARRAY, SIZE) ; Write on it

CALL DMPAST(FILE, LOC, 0)

CALL DMRAST(FILE, ARRAY, SIZE) ; Read from it

CALL DMFASTiFILE, 0, 0) ; Free the file

The last two arguments M and N in the position operation DMPAST
give the location (in sectors or PRU'S) and mode. For our
purposes, the mode N should always be 0. Other values for the
mode N allow relative addressing and the use of other addressing
units such as words. Similarly, the last two arguments of
operation DMFAST should always be 0 for our applications. The
third argument is a dummy argument and the second affects
special termination conditions such as a final file erasure.
Setting the second argument M to zero causes release of the file
in a manner appropriate for the way in which it was declared.

DMDAST

File declaration is the most unpleasant I/O operation but,
of course, must always be done prior to any other I/O operations
on a given file. The form of the operation

DMDAST(FIL-, NAME, ORGN)

given in the illustration above is used to describe it. The
arguments are interpreted as follows:

FILE - The (integer) index to be used for the file
NAME - The external device name associated with the

file (up to 18 characters left-adjusted and
blank filled). The last character must be a
blank. If the first character is a blank, a
default name is generated.

ORGN - An integer array describing the organizational
aspects of the file as follows:

1 Type of hardware
= 0, Default, sector addressable, random

access device
= 1, High speed, low capacity (scratch)

device
= 2, Like = 1 case but word addressable

4 device
= 3, Extended RAM (core) storage
=-, Seven track tape (system default

density)
=-2, Nine track tape

2 Permanency and accessibility attributes
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= 0, Temporaty file
1 1, Write enabled mag. tape

= 2, Previously assigned file
- 3, Cataloged file, read only
- 4, Cataloged file, read or write permitted
= 5, Create new reserved tape file
= 6, Catalog new public disc file
- 7, Catalog new read-only private disc file
= 8, Catalog new read-only public disc file
- 9,10,11 or 12, Same as = 5, ... , 8 cases

but catalog file only if correct program
termination

=-l,-2, ..., -12, Same as positive cases but
first check if the file is already as-
signed.
If it is, simply establish linkage with
the file index.

3 Device capacity in words (if appropriate).
= 0, Use default value (usually best choice)

4 PRU (physical record unit) size in words. If
ORGN(4)=0, the physical sector size of the
storage device will be used. The PRU size
must be a multiple of the sector size.
This item is ignored for mag tape.

The NAME and ORGN information is obtained directly from the NAME
and PARAMS arguments of VMOPEN as described in Section 3.3.2.

5.2 SUPPLEMENTARY OPERATIONS

in addition to the basic I/O operations there are a number
of convenient supplementary operations primarily used for
information purposes. The supplementary operations used by
VMSYST are all integer functions of the forms:

LMLDIU(NO) - The NOth entry in the list of logical
device indexes recognized by DMGASP.
(Returns zero if NO is out of range)

LMUNIT(FILE) - FORTRAN unit number corresponding to
logical device index FILE (if one exists).
This is the inverse of LMLDIU, i.e.,

FILE = LMLDIU(LMUNIT(FILE)).
(Returns zero if FILE is out of range)

LMLIMT(FILE) - The capacity of the file in PRU''S
LMNEXT(FILE) - The next free PRU on the file
LMSECT(FILE) - The sector size of the file in words
LMPRUS(FILE) - The PRU size of the file in words

where NO is any integer less than 60 and FILE is a logical
device index (integer) linked to a declared file via the DMDAST

* - 22
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operation. The correspondence between device indexes, such as
NO, and logical device indexes, such as FILE, is internally
established by DMGASP. It may vary among installations, even
for the same host computer. Logical device indexes are used to
avoid problems associated with special (non-standard) purposes
given to certain I/O unit numbers for FORTRAN programs such as 5
for the card image reader and 6 for the line printer.

ACKNOWLEDGEMENTS

This project has evolved over the last four years through
several versions. The author is indebted to many colleagues
that have used and commented on earlier versions of this system.
Particular thanks go to Dr. J. K. Reid for originally suggesting
this system and for numerous comments on it. Thanks also go to
Mr. L. E. Stearns for some of the implementation and to
Dr. C. A. Felippa for carefully reading this manuscript and
suggesting numerous improvements. Work on this project has been
supported by the Air Force Office of Scientific Research,
contract F49620-76-C-0003, the Air Force Flight Dynamics
Laboratory, contract F33615-76-C-3105, and L'Office National
d'Etudes et des Recherches Aerospatiales, contract
19-288-SAT-ONERA.

- 23 -



REFERENCES

1. Denning, P.J., "Virtual Memory," AH Computing Surveys,

2,3 (1970) 153-189

2. Felippa, C.A., *The Input-output Manager DMGASP,"

LMSC-D766628, Lockheed Palo Alto Research Laboratory,
Palo Alto, (October 1980)

3. Fine, G.H., "Dynamic Program Behavior Under Paging,"

Proc. 21st AO Nat,. Conf., Thompson Book Co.,
Washington, D.C. (1966)

4. Goldberg, R.P., "Virtual Machine Systems," Report
MS-2687, MIT Lincoln Lab. (Sept. 1969)

5. Hatfield, D.J. and J. Gerald, "Program Restructuring
for Virtual Memory," IBM Systs. Jnl. 10 (1971) 168

6. McGrath, M., "Virtual Machine Computing in an

Engineering Environment," IBM Systs. Jnl., 11 (1972)
131

7. McKellar, A.C. and E.G. Coffman, Jr.,"Organizing

Matrices and Matrix Operations for Paged Memory
Systems," Comm. AC0, 12,3 (1969) 153-165

8. Parmelee, R.,"Virtual Machines: Some Unexpected

Applications," Proc. 1971 IEEE mnt. Comp. Soc.
Conf., Boston, Mass. (1971)

9. Parmelee,R., T.I. Peterson C.C. Tillman and
D.J. Hatfield, "Virtual Storage and Virtual Machine
Concepts," IBM Svsts. Jnl., 11 (1972) 99

A"

A

I



GLOSSARY OF TERMS

COLD START - Program start with an initially empty resident set

CONTROL PARAMETER - A parameter that governs the size of the
resident set and the duration of each segment's
(page's) sojourn

LIFETIME CURVE - The mean number of references between page
faults versus the resident set size

LOCALITY - The concept that a program favors a subset of its
segments during extended time intervals (phases)

LOCALITY SET - The collection of segments used by a program
during a phase (see locality)

PAGE - A fixed size block of contiguous locations in a virtual
address space

PAGE ALIGNED SEGMENT - A segment that starts at the beginning of
a page and ends at the end of a page in virtual
address space.

PAGE BUFFER - Region in main memory used to hold the resident
set

PAGE FAULT - Interruption of a program to modify its resident
set in order to satisfy a reference r(t) at some time
t

PAGE TABLE - A resident table used to implement the paging
policy

PAGING POLICY - The method used to decide what modification of
the reference set will be made in order to service a
page fault. Typical policies for page removal are:
FIFO - First in, first out
LRU - Least recently used
ALD - Atlas loop detection

PHYSICAL RECORD UNIT (PRU) - The addressable unit of data used
for I/O operations to an auxilliary storage device.
The size of a PRU (in words) must be a multiple of
the granularity (e.g., sector size) of the storage
device.

REFERENCE - A single access (get or put) to a segment

REFERENCE STRING - r(l), r(2),...,r(t) A string (or sequence) of
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references where, r(t) is the reference at time t

RESIDE14T SET - All segments in main memory at a given time. The
size of each segment in the resident set is a
multiple of the page size.

SAMPLE INTERVAL - A fixed length time interval serving as a unit
for measuring memory management performance

SECTOR - The smallest addressable unit of data for an auxilliary
storage device such as drum or disc. (Hardware and
O/S dependent)

SEGMENT - A block of contiguous locations in virtual address
space

SLOW-DRIFT LOCALITY - The proposition that (locality) phases
tend to be long and that changes in the locality sets
between phases tend to be mild "The trouble [with
this concept) is that it is wrong" P.Denning 1978

SWAPPING CURVE - The rate of segment (page) faults versus the

resident set size

TIME - A measure of memory references

VIRTUAL ADDRESS SPACE - A sequence (starting with 1) of storage
locations for holding words of data that are accessed
by means of a virtual storage management system.

VIRTUAL MEMORY - An organized collection of data in computer
storage that is accessed by means of a specific
hardware and/or software system using elements of a
virtual address space.

WARM START - Program start with a non-empty resident set.

WORD - The data unit used to hold a single-precision
floating-point number in main storage. Typical word
sizes are: 32 bits (DEC and IBM), 36 bits (Univac)
and 60 bits (CDC).

WORKI4G SET - The set of segments (or pages) used during a given
sample interval

WORKIN G SET POLICY - A memory management policy for which the
resident sets are always working sets
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A COMPARISON OF TWO SPARSE MATRIX

PROCESSING TECHNIQUES FOR STRUCTURAL

ANALYSIS APPLICATIONS

William A. Loden

ABSTRACT

The performance of algorithms based on two techniques for

the solution of large sparse, symmetric linear equation systems

of the type that arise frequently in structural analysis are

studied. Representative test problems, for simple and complex
structural configurations treated with the finite element
method, are solved with two implementations of Cholesky method
profile algorithms and with the SPSYST sparse-matrix system
package developed by J. K. Reid.
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SECTION 1

INTRODUCTION

This study compares two techniques for the solution of large
sparse, symmetric linear equation systems that arise frequently
in structural analysis. The equation system of interest,

Ax = b, (1.1)

has a symmetric, positive-definite matrix A that can be ex-
pressed as

S(k)

SA=E E (1.2)

where the E are very sparse "element" matrices. A matrix is
said to be sparse when a large number of its entries are zero.

Direct methods for solution of this basic problem have a
long and interesting history, and excellent surveys of work on
this subject are available (e.g., 2,3,41. Profile methods (also
called skyline or variable-bandwidth methods) comprise a class
of direct methods that has gained widespread usage due to their
relative simplicity, flexibility, reliability and reasonable
efficiency. Techniques that take fuller advantage of the
sparseness of A have been developed comparatively recently and
are considerably less well-established. Potentially, they have
an unquestioned advantage for very large problems because they
involve fewer operations and deal with smaller volumes of data.
Their main weakness, to date, has been their complexity. Sparse
matrix programs and program systems tend to be collections of
complex routines that require considerable skill on the part of
the analyst for effective application. As noted by P. S. Jensen
in (51, although a number of sparse matrix packages have been
constructed in recent years, none appear to be suitable for very

large problems that cannot be held within the high speed memory
of a computer.

The SPSYST package [11, based on a generalization of the

frontal method (6], appears to be one of the most promising
algorithms to emerge in recent years. Its internal data
management system is based on a virtual memory approach, using a
special FORTRAN language virtual storage "simulator" (7] for
non-virtual computer systems.

The objective of this study is to compare a generalized wave
front technique (SPSYST) with currently popular profile methods
for applications to structural analysis. Section 2 of this

report begins with brief descriptions of two profile programs
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used in this study. The programs used were selected because of
their ready-availability and because of their wide usage in
various large-scale programs and program systems at the Lockheed
Missiles and Space Co., Inc. (LMSC). This Section continues
with a short description of the profile-minimization algorithm
used to produce near-optimum orderings of the equations of A,
for use with the profile method approach. Following a brief
description of SPSYST, Section 2 concludes with a description of
the testing program (called SPARTA) that was constructed to
apply SPSYST to problems for which the element matrices are
generated by an external source (structural analyzer).

in Section 3, five test problems are described and the
performances of SPSYST (i.e., of the SPARTA program in which
SPSYST is imbedded) and of the two profile method programs are
compared. These problems, the finite element models for . :
were developed in recent years by various engineering groups at
LMSC, range from relatively simple to moderately complex, and
are representative of the types of structural analysis problems
that occur frequently in practice.

Section 4 includes observations and comments based on
experiences gained in this investigation, and offers some
suggestions for further work.
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SECTION 2

THE PROFILE AND SPSYST ALGORITHMS

2.1 The Profile Algorithms

Profile methods, which evolved from the constant-band matrix
techniques developed in the late 1950's and early 1960's, enjoy
wide usage with medium- and large-scale finite element and
energy-based finite difference structural analysis programs and
program systems. For this approach, it is anticipated (but not
essential) that the system matrices (i.e., the stiffness, mass,
damping and/or other matrices that characterize the system to be

treated) have their nonzero entries clustered about the main
diagonal. These methods are organized to take advantage of this

structure by physically storing and performing arithmetic
operations only within the active area of the A matrix [ i.e.,
within that portion of the matrix that lies between the main
diagonal and the farthest nonzero off-diagonal entry in each

column of the upper trianqular half (or, equivalently, in each
row of the lower triangular half) of the matrix ]. The shape of
the active area remains invariant during factorization
operations. The popularity of profile methods derives, in part,
from the facts that: 1) relatively straightforward management
of main and auxiliary storage is required, 2) the storage and

run-time costs are easily predicted in advance, 3) they are
reasonably efficient for many applications and 4) they can be
implemented by relatively short and simple codes.

Commonly used profile algorithms are based on Gaussian

elimination, -tandard Cholesky (A= LL') and modified Cholesky
(A= LDL') metliods. 'ho implementations differ primarily in the
manner in which the nonzero coefficients of A are arranged
within the various storage devices (i.e., within core, extended

core, on random-access mass storage devices, etc.). These
differences become quite significant as the size of A and the
storage requirements for the active area of A increase, and the
efficiency of most of these algorithms is closely-tied with the
architectural characteristics of the computer system being used.
Two representative profile algorithms are used for this study,
partly to limit the scope of this investigation and partly
because of their ready-availability and confidence in results
obtained with them at LMSC. The first of these, called "OLDPRO"
for convenience, has been used extensively within LMSC'S DIAL
[8], NEPSAP [9] and REXBAT (101 program systems and is a
well-tested, fairly-efficient Cholesky method. The second,
called "SKYPUL", is part of a recently-developed set of utility
routines (111 for treating large sparse, symmetric equation
systems, using the LDL' Cholesky approach.
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2.2 Profile-Minimization Algorithm

The efficiency of profile algorithms is closely-related to
the topological characteristics of the equation system(s) being
treated. Well-ordered systems, for which the active areas are
small, can be factored and solved with less effort and at less
expense than poorly-ordered systems. It is difficult and
uninteresting for the analyst to choose the order in which the
equations should be treated in order to minimize the size of the
active area. Consequently, one of several effective, efficient
and fairly easy-to-use profile minimization algorithms is
generally used as a matrix preprocessor. In this study, a
profile minimizer called PROM was used to generate good
orderings for the profile solutions of the test problems
considered. PROM is an implementation of the
Gibbs-Poole-Stockmeyer algorithm (12).

2.3 The SPSYST Algorithm

SPSYST is based on a generalization of the frontal method
(61, in which the equation ordering for a finite element matrix
A (say) for Gaussian elimination is determined by the order in
which the elements that generate A are assembled. The factoring
of A is carried out simultaneously with its assembly (i.e., with
the summation of the elements generating A). The factorization
for each row is completed as soon as it is fully assembled. The
fundamental assemble/factor process is a pairwise operation in
which two matrices are summed and the "internal" variables
(i.e., those that then correspond to fully-assembled rows of A)
are eliminated before another pair of matrices is considered.
The order in which the element matrices are combined thus
determines the order in which the rows are eliminated. For a
more detailed description, see (1] or (51.

The two versions of SPSYST used in this investigation
construct good orderings with minimal information provided by
the analyst. One version of SPSYST employs a "minimum fill"
heuristic, and the other uses the "minimum degree" approach.

For analyses of configurations in which there are natural
groupings of elements into substructures (some of which might be
repeated several times in the full structure), SPSYST is
designed to accept this information from the user in order to
simplify and perhaps reduce the cost of its analysis. This
information is presented to SPSYST in a natural way that is
convenient for the user.

2.4 The Test Program

In order to apply the SPSYST algorithms to the test problems
considered in this study, it was necessary to construct a cover
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program through which the externally-generated data for the
problems (i.e., the element stiffness matrices und information
relating them to the displacement variables) could be accessed.
Special user controls for specifying element sets to be treated
as "user-generated super-elements" (abbreviated UGSEs hereafter)
were included. This cover program, called "SPARTA" (for SPARse
Testing Algorithm), was designed to accept element-stiffness
data from any external source, i.e., any program or program
system used to define the configuration to be analyzed, with the
only restriction being the fact that these data must be in a
certain format and sequentially ordered on an input
(mass-storage) file. The REXBAT finite element program system
(10] was used to generate all of the structural models
considered in this study. These "REXBAT" models, which
represent actual structural configurations that have been
developed at LMSC in recent years, are representative of the
types of structures problems that are likely to be encountered
in practice.

The principal features and logical structure of the main
program for SPARTA are shown in Figure 2.1. An important
feature of this program is its ability to sense the core-space
requirements for a problem, and to acquire more space as
necessary. This is especially important when SPARTA operates on
non-virtual machines such as the UNIVAC 1100/83 system used for
this study. This "dynamic sizing" is accomplished by placing
all of the problem-size-dependent major arrays within the blank
common block, with starting locations at addresses that are
determined by the program. These arrays are passed to the
SPARTA and to the SPSYST subroutines via calling sequences.
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Read run-control data and initialize control variables
and the virtual memory system; then read the initial

RXREAD two-word record (KDOF and JREC) from the transfer file

Determine the locations in core of the {SKY} and {LOC}
vectors; and acquire more core space to contain them,
if necessary.

Read the element stiffness data from the transfer file
and store these data on program-controlled integer and

RXREAD real virtual memory files for later uses by various
SPARTA routines; read the fsky) vector ( a subset of
{SKY} ) for the original model; and specify boundary
conditions (i.e., the subset of trivially-constrained

DOF) for the problem at hand.

Determine the locations in core of other major arrays;
and acquire more core space, if necessary.

RXFORM Process all of the element data supplied; set up any 1
RXSAME user-defined "super-elements"; establish any "SAME"

interfaces; and then collect all of the established
"super-elements" for final processing by SPSYST.

Re-configure core space for the factoring operations, 1
locating additional arrays and acquiring more space, !
if necessary.

FACTOR Analysis phase of the factoring operation; followed

RXCROW by the actual factorization of (A].

Establish the RHS vector, (b), for the problem; solve
SOLVE the system [A]fx}= {b) for the desired displacement

vector {x), using the factored (A] matrix; then print
this solution, with milestone timings.

STOP:

Figure 2.1 Schematic of the Main Program for SPARTA.
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This replaces the use of various named common blocks (the sizes

of which are not adjustable at run time), by the original
version of SPSYST. The total size of the blank common b..ock,
which (on the UNIVAC computer system) is mapped onto the high

end of the program's data bank, is adjusted by means of
appropriate executive requests to the computer's operating
system. It is thus possible to increase or decrease the total
size of the SPARTA program as the core-space requirements
increase or decrease during any given analysis.

As noted in the preceding section, the specification of the

order in which the elements are to be treated is a critical
aspect of this method. This specification is accomplished
within a subroutine called "RXPORM". After all of the supplied
elements are "processed" (by removing constrained DOF from the
lists of variables associated with them and by calling the
appropriate SPSYST subroutine (INELV) to get the modified lists

of variables into the SPSYST "system") the analyst can do any of

the following things:

Specify one or more UGSE's, which can be "constructed" using

elements and/or other UGSEs.

Generate a "final" UGSE which includes all supplied elements

that have not been assigned to other UGSEs (if none of the

supplied elements are to be excluded from the analysis at
hand).

Employ SPSYST's "SAME" interfacing capabilities for repeated

elements. These operations are controlled by subroutine
RXSAME, which facilitates establishing the equivalence of
UGSEs to other UGSEs and/or the creation of new
"super-elements" the elements of which did not exist in the
original model.

After these operations are completed, all of the established

super-elements are collected into a final "root super-element".

It is possible for the analyst to specify the entire
assembly order (by repeated use of the first process in the
above list). This is likely to be a very time-consuming and
counter-productive effort, especially for a complex structure.
SPSYST is able to construct o good ordering for each
super-element that it is called upon to process and, by
extension, for a complete problem as it becomes a single root
super-element through concatenation of all user- and
program-generated super-elements.
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SECTION 3

TEST PROBLEMS

3.1 Introduction

In order to compare SPSYST with two representative profile
algorithms (OLDPRO and SKYPUL), five test problems were set up
and solved in various ways using these solvers. This small set
of test problems, four of which use finite element models for
structural configurations that were analyzed at LMSC in recent

years, is not intended to be comprehensive; but it is expected
to represent the types of structural analysis problems that are
frequently encountered in practice.

The first problem involves a two-dimensional, triangular
domain that models a simple dam structure. This relatively
small problem was solved in numerous ways with SPARTA, using
different combinations of "user-generated super-elements"
(UGSEs) and several uses of SPSYST's "SAME" interfacing
technique. The second problem involves a more complex finite
element model of a "gyro" cradle assembly and was solved twice
with SPARTA, once using a single UGSE and again using three.
The third problem involves a finite element model of a
structural component used in ocean-mining operations (the
"porch" structure) and was only solved once with SPARTA, using a
single UGSE. The fourth problem (the "tower" structure)
involves a finite element model of a launch umbilical tower and
was solved twice, using one and using t ree UGSEs. The final
problem, the "cross-cone" structure (a finite element model of
part of a vehicle), was solved twice, using one and using two
UGSEs. All of these problems were also solved using the OLDPRO
profile algorithm, and two of them were also solved with the
SKYPUL profile algorithm.

p, One measure of the efficiency of any algorithm for matrix
factorization is the number of FLOPS (floating point operation,
consisting of a single multiplication and addition) required to
do the complete process. FLOP counts are given for SPSYST and
for the profile algorithms used for each of the problems
considered. The number of nonzeros is also given, as a measure
of the in-core storage requirements (for real numbers) during
the factoring operations with SPSYST, and as a measure of the
total storage requirements for the fully-assembled A matrix with

L " the profile algorithms. These measures, by themselves, do not

take into account the computational expenses (e.g., the cost per
FLOP) for the various algorithms used, and good FLOP counts must
be interpreted in the light of that kind of information, too.

In order to measure these computational expenses, calls to a

timing routine which measures elapsed central processor (CP)
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time were made at various key points in SPARTA and in the REXBAT
program. Another UNIVAC system timing processor (which measures
elapsed CP time, I/O activity and time, and total run cost) was
exercised immediately before and after each execution of SPARTA,
of REXBAT processors, and of SKYPUL processors. This timing
information proved to be repeatable and to correlate well with
the actual run costs.

The "dam" problem was solved repeatedly during the program
coding and verification efforts as SPARTA was being developed on
the DEC VAX-11/780 computer system. Only a few of these tests
were repeated when SPARTA was shifted to the UNIVAC 1100/83
computer system for the numerical experiments with the other
four problems, so the "dam" results included here do not include
"timing" data. This is not critical, since the "dam" problem is
the smallest one considered in this study.

3.2 The "Dam" Problem

The finite element model for the "dam" problem (see Figure
3.1) involves 50 identical linear strain (6-node) triangular
elements. These elements are connected among 121 node points,
each of which has two translational degrees of freedom (DOF),
giving a total of 242 DOF in the unconstrained structure. All
of the node points along the bottom of the "dam" are fully
constrained (i.e., both displacement components are set equal to
zero), so the problem has only 200 "active" DOF (unknowns).

The complete structure was analyzed with the REXBAT program,
using the OLDPRO profile method for the factorization of the
completely assembled stiffness matrix, with no use of that
program's substructuring techniques. The relevant results for
that analysis are shown in Table 3.1.
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Fig. 3.1 The "Dam" Problem.
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*Fig. 3.2 Dam Substructurings for SPARTA Analyses.
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Fig. 3.3 SPARTA Analyses of Dam, Using "SAME" Interfaces.
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TABLE 3.1

PROFILE SOLUTION OF THE DAM PROBLEM

Total no. of DOF ....................... 242
No. of "active" DOF ............... 200
Maximum Semibandwidth of A ............. 44
Average Semibandwidth of A ............. 24.6
Nonzero Stiffness Values ............... 3400

Active Area ........................... 5943

Factorization FLOPs .................... 67896

This problem was analyzed with SPARTA in 11 different ways
wherein the full structure (50 elements) was treated as a single
"user-generated super-element" (UGSE) and as assemblies of two,
three, four and five UGSEs, with the elements used to form these

UGSEs taken in different combinations. The substructurings
considered are shown in Figure 3.2, and the UGSE sizes and the
FLOP counts for these analyses are shown in Table 3.2.

TABLE 3.2

FLOP COUNTS FOR SPARTA SOLUTIONS OF THE DAM PROBLEM

Case Figure Number of Elements Included in UGSE No. of

No. No. No. 1 No. 2 No. 3 No. 4 No. 5 FLOPs

1 3.2 a 50 - - - - 28548

2 3.2 b 42 8 - - - 27428
3 3.2 c 32 18 - - - 32892
4 3.2 d 18 32 - - - 54828
5 3.2 e 25 25 - - - 28484

6 3.2 f 32 10 8 - 37244
7 3.2 g 18 14 18 - - 67396

8 3.2 h 32 10 6 2 - 38652
9 3.2 i 18 14 10 8 - 71748

10 3.2j 16 9 16 9 - 33260

11 3.2 k 18 14 10 6 2 73156
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The lowest FLOP counts obtained here (27428 and 28484) were
for two cases in which the complete structure was divided into
two UGSEs by the analyst, but these counts are not much lower
than the result (28548) that was obtained with all of the
elements used to form a single UGSE. Most of these results are
lower than the FLOP count (67896) obtained for the profile
method.

This problem was also analyzed with SPARTA in 4 different
ways wherein the full structure was treated as an assembly of 7

UGSEs, with the substructuring scheme shown in Figure 3.3, and
using SPSYST's "SAME" interfacing capabilities to equivalence
some of these substructures to others. In the first two of
these analyses, all 50 of the REXfV7-generated element matrices
were used in formiig the 6 UGSEs; and one or two of these UGSEs
were declared to be the "same" as one or two of the other ones.
In the third analysis, the elements comprising UGSE number 6
were assumed not to be given; and the program was required to
"create" the missing substructure by using one that is the
"same" as UGSE number 2. In the fourth analysis, two UGSEs were
taken to be the "same" as two others; and UGSE number 6 was
"created" as in the third analysis. The pertinent results for
these tests are given in Table 3.3. The FLOP result for this
substructuring, without using the "SAME" interfacing capability,
is also included in this Table as Case 5.

TABLE 3.3

SPARTA FLOP COUNTS FOR DAM, WITH "SAME" INTERFACING

Case Figure UGSE or PGSE ... is equivalenced No. of

No. No. No. No. to UGSE No. FLOPs

1 3.3 a 6 - 2 66382

2 3.3b 6 - 2
4 - 3 54245

3 3.3 c - 6 2 63838

4 3.3d 4 - 3
7 - 5
- 6 2 59759

5 - - - 58612

PGSE= "program-generated super-element"

S-41



The FLOP counts for Cases 1 through 4 are not significantly
different from that for Case 5, with which they should be
compared. All of these cases have higher FLOP counts than the
best of the previously-described cases (in which "SAME"
interfacing was not attempted). These last tests served
primarily to verify the correctness of the implementation, in
SPARTA, of the "SAME" interfacing process. The relative
Nefficiency" and other aspects of this technique must be
determined through other tests (which, unfortunately, were not
performed in the present study).

4
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3.3 The "Gyro" Problem

The finite element model for the second ("gyro") problem
(shown in Figure 3.4) has 323 elements (including 89 12-DOF
beams, 104 18-DOF triangles, 126 24-DOF quadrilaterals and 4
12-DOF hand-generated elements). These elements are connected
among 179 node points, each of which has six DOF; and the
problem has a total of 1074 DOF of which 1038 are "active",
since six node points are fully-constrained (i.e., have their
displacement values fixed to be zero).

The complete problem was analyzed with the REXBAT program in
two ways: once (Case 1) with the DOF ordering supplied by the
original analyst (who tried to produce as good an ordering as
possible without making extraordinary efforts to do so), and
again (Case 2) with the DOF ordering that was determined by the
PROM profile-minimization program. The PROM-optimized version
of the problem was also analyzed with the SKYPUL processors
(Case 3), which involved: 1) conversion of the assembled A
matrix from its OLDPRO form to the SKYPUL format, 2)
factorization of this matrix, 3) generation of an appropriate
RHS vector, and 4) solution of the equation system for the
desired displacements. The problem-size and FLOPs results for
these profile-method solutions are given in Table 3.4, and the
timing results are given in Table 3.5.

TABLE 3.4

SIZES AND FLOPs FOR THE PROFILE SOLUTIONS OF THE GYRO PROBLEM

Case 1 Case 2 Case 3
ITEM OLDPRO OLDPRO SKYPUL

4 + PROM + PROM

Total No. of DOF ............. 1074 1074 1074
No. of "Active" DOF .......... 1038 1038 1038
No. of Nonzero Stiffness Values 44937 44937 44937

Maximum Semibandwidth of A .... 612 138 138
Average Semibandwidth of A .... 100.9 82.6 82.6
Profile Area of A ............. 108339 88683 88683

FLOPS for Factorization of A 6211852 3829558 3829558
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Figure 3.4 Finite Element Model for the "Gyro" Problem.
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TABLE 3.5

TIMINGS FOR THE PROFILE SOLUTIONS OF THE GYRO PROBLEM

Case 1 Case 2 Case 3
ITEM OLDPRO OLDPRO SKYPUL

+ PROM + PROM
------------------------------------------------------------------------

Assembly of the A Matrix:

CP Time [seconds] .......... 4.4 4.2 4.2
I/O Time ...................... 39.8 37.6 37.6
SUP Units ($) ................. 48.6 46.9 46.9

Factorization of the A Matrix:

CP Time - - 10.7
I/O Time - - 9.5
SUP Units .................. - - 25.0

Solving Operations:
CP Time - - 0.6
I/O Time ................... - - 6.4
SUP Units .................. - - 12.3

Factorization + Solving:

CP Time ... .................. 43.8 33.6 11.3
I/O Time ..................... 73.0 51.5 15.9
SUP Units .................... 130.1 98.3 37.3
I/O Operations ............. 1113 908 376
Kilowords Transferred ...... 4605 2731 1182
Avg. Cost (SUP/megaFLOP) .... 20.9 25.7 9.7

S A "SUP" is the Standard Unit of Processing on the UNIVAC
Computer System in Operation at LMSC at the Present Time

The superior timings obtained with the PROM-generated DOF
ordering are evident here; but it should be noted that these
timings do not include the extra work involved in generating the
required input for the PROM program and the (low) cost of
executing PROM to obtain the optimized DOF data for the OLDPRO
and SKYPUL programs, The SKYPUL results are significantly
better than the OLDPRO results for this problem. The OLDPRO
timings are slightly inflated by the fact that the results given
were obtained through the UNIVAC system timing processor, which
is external to the program module in which the factorization and
solving operations are performed, and include other operations
(specification and imposition of boundary conditions,
computation of nodal reactions, and printing of these data and
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the displacement solution obtained). Most of the differences,
however, must be attributed to SKYPUL's superior logical
organization, which (among other things) minimizes the I/O
requirements for factorization of A, and to its extensive use of
machine-language coding. The OLDPRO routines, like SPARTA, only
use machine language in the inner-product operations done
primarily within the innermost loops of these programs.

The "gyro" problem was analyzed in SPARTA in two different
ways: once (Case 4) where all of the elements of the structure
were combined into a single UGSE (letting SPSYST do all of the
work in generating the ordering for its "root super-element"),
and once (Case 5) with three UGSEs. The substructuring used for
this second case, shown in Fig. 3.5, had 12 elements in UGSE
number 1 (the cross-member), 163 elements in UGSE number 2 (part
of the cradle) and 148 elements in UGSE number 3 (the remainder
o' the cradle). The substructuring data, FLOP counts, aid
timing results for these analyses are given in Table 3.6.

TABLE 3.6

SPARTA RESULTS FOR THE GYRO PROBLEM

ITEM Case 4 Case 5

Number of Elements in UGSE 1 ........... 323 12
Number of Elements in UGSE 2 ........... - 163
Number of Elements in UGSE 3 ........... - 148

No. of FLOPs to Factor the A Matrix .... 2414455 2564791
No. of Nonzeros for A Factorization .... 67029 69225

CP Time for "Analysis" [seconds] ...... 3.7 3.9
CP Time for "Factoring" ................ 15.3 15.6
CP Time for "Solving" ................... 1.3 1.2

Total CP Time for SPARTA Analysis ..... 22.2 22.4
Total I/O Time for SPARTA .............. 143.1 145.1
Total SUP Units .......................... 176.3 178.6
Total 1/0 Operations ... ................. 3467 3672
Kilowords Transferred. ................. 1531 1555
Avg. Cost (SUP/megaFLOP)..'.............. 73.0 68.9
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Figure 3.5 SPARTA Substructuring for the "Gyro" Problem (Case 5) .
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The factoring operation is done in two phases in SPARTA:
the first part is an "analysis" phase in which the integer lists
for the various "super-elements" are examined and preparations
are made for the real-number crunching, and the second phase
(which might be done many times, using different sets of real
numbers for which the analysis results of phase one apply, in
some kinds of problems) where the actual number-crunching is
done. The "Total" figures cited here include necessary
problem-setup and printing operations, too.

3.4 The "Porch" Problem

The finite element model for the "porch" problem (shown in
Fig. 3.6) has 324 elements (including 72 6-DOF axial "bar"
elements, 158 12-DOF beams, and 94 18-DOF triangular plates).
These elements are connected among 122 node points, most (but
not all) of which have six DOF. The problem involves a total of
700 DOF, with 9 of these DOF subjected to "trivial" constraints
(i.e., forced to remain zero), leaving 691 "active" DOF for the
analysis.

The REXBAT program was used to set up this problem in two
ways: the first (Case 1) analysis, which was not carried out to
completion, used the original analyst's DOF-ordering scheme
(which proved to be singularly uninspired and inefficient); and
the second (Case 2) used the DOF-ordering produced by the PROM
program. The problem-size and FLOPs results for these two
cases, and the timing results for the second (more-reasonable)
case, are given in Table 3.7.

The "porch" problem was analyzed once with SPARTA,
collecting all of the elements of the configuration into a
single UGSE. The FLOP count and timing results from this
analysis are given in Table 3.8.

The FLOP-count result for this problem is better in the
SPARTA analysis than in the OLDPRO/PROM analysis; but the CP,
I/O and SUP timings are all better with OLDPRO/PROM than with
SPARTA. This appears to be a problem for which the greater
overhead involved in SPSYST's sparse-matrix operations makes
SPARTA less efficient than the profile algorithm.
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Figure 3.6 The "Porch" Configuration.
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TABLE 3.7

SIZES, FLOP COUNTS, AND TIMINGS FOR

OLDPRO SOLUTIONS OF THE PORCH PROBLEM

ITEM Case 1 Case 2

Total No. of DOF .................... 700 700
No. of "Active" DOF ..................... 691 691
No. of Nonzero Stiffness Values ... 14499 14499
Maximum Semibandwidth of A ....... 682 138

Average Semibandwidth of A ....... 119.3 64.5
Profile Area of A ................ 83530 45375
FLOPs for Factorization of ..... 5709522 1714008

Assembly of the A Matrix:
CP Time [seconds] ............ - 4.2
SUP Units ...................... 16.0

Factorization + Solving:

CP Time ....................... - 13.6
I/O Time ....................... - 6.6

SUP Units ...................... - 33.7

I/O Operations ................. - 213
Kilowords Transferred .......... - 1091
Avg. Cost (SUP/megaFLOP) ....... - 19.7

TABLE 3.8

SPARTA RESULTS FOR THE PORCH PROBLEM

ITEM Case 3

Number of Elements in UGSE 1 ...................... 324

No. of FLOPs to Factor the A Matrix ................. 1168776

No. of Nonzeros for A Factorization .................. 35310

CP Time for "Analysis" (seconds] .................... 12.4
CP Time for "Factoring" . .............................. 11.4
CP Time for "Solving" . ............................ 0.9

Total CP Time for SPARTA Analysis .................. 28.0

Total I/O Time for SPARTA ............................ 24.8
Total SUP Units .................................... 61.3
Total I/O Operations .............................. 1587
Kilowords Transferred ............................. 743
Avg. Cost (SUP/megaFLOP) .......................... 52.5
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3.5 The "Tower" Problem

The finite element model for the "tower" problem (shown in
Fig. 3.7) has 944 12-DOF beam elements connected among 372 node
points. Each node has six DOF, giving a total of 2232 equations
in the A matrix; but four of these nodes are fully-restrained,
so the problem has only 2208 "active" DOF.

This configuration was analyzed with OLDPRO using the DOF
ordering supplied by the original analyst (which could not be
improved by the PROM program), and with the SKYPUL processors,
after converting the A matrix from its OLDPRO format to the
SKYPUL format. The problem-size data, FLOP count, and timing
results are given in Table 3.9.

TABLE 3.9

SIZES, FLOP COUNT, AND TIMINGS FOR
PROFILE SOLUTIONS OF THE TOWER PROBLEM

Case 1 Case 2

ITEM OLDPRO SKYPUL

Total No. of DOF ........................ .2232 2232
No. of "Active" DOF ................. 2208 2208
No. of Nonzero Stiffness Values..... 33812 33812

Maximum Semibandwidth of A .......... 150 150
Average Semibandwidth of A .......... 56.5 56.5
Profile Area of A ................... 126108 126108

FLOPs for Factorization of A .......... 3930360 3930360

Assembly of the A Matrix:
CP Time [seconds] .................... 5.7 5.7
SUP Units ...... ...................... 48.0 48.0

Factorization + Solving:
.4 CP Time ...... ...................... 22.9 10.8

I/O Time ...... ...................... 52.8 18.9
SUP Units ... .. .................. 88.0 40.1
I/O Operations ...... ............. 661 392
Kilowords Transferred ............ 4029 1445
Avg. Cost (SUP/megaFLOP) ......... 22.4 10.2

---
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The superiority of SKYPUL over OLDPRO is again evident. The
important point, however, is that the better profile method
requires 5.7 + 10.8 = 16.5 seconds o CI' i±lue ,ziU C0bLz 4o.u I

40..- o.1 SUP units to do the assembly and factor/solve
operations for this problem.

The "tower" configuration was analyzed twice with SPARTA:
first using all 944 elements in a single UGSE (Case 3), and then
breaking the complete structure into three UGSES (Case 4, shown
in Fig. 3.8), with 163 elements use in UGSE number 1 (at the
base of the tower), 261 elements in UGSE number 2 (just above
the base), 260 elements in UGSE number 3, and the remaining 260
elements in UGSE number 4 (at the top of the tower). The
results for these two SPARTA analyses are given in Table 3.10.

TABLE 3.10

SPARTA RESULTS FOR THE TOWER PROBLEM

ITEM Case 3 Case 4

Number of Elements in UGSE 1 .......... 944 163
Number of Elcments in UGSE 2 .......... - 261
Number of Elements in UGSE 3 ..........- 260
Number of Elements in UGSE 4 .......... - 260

No. of FLOPs to Factor the A Matrix .... 4593808 4436992
No. of Nonzeros for A Factorization .... 131784 112590

CP Time for "Analysis" [seconds] ...... 13.9 9.4

CP Time for "Factoring" ................ 26.4 27.3
CP Time for "Solving" .... ............. .. 2.1 2.3

Total CP Time for SPARTA Analysis ..... 46.1 42.3
Total I/O Time for SPARTA ............. 296.0 260.0
Total SUP Units .......................... 358.2 317.6
Total I/O Operations ... ................. 7163 6300
Kilowords Transferred ................. 3163 2782
Avg. Cost (SUP/megaFLOP) ............... 78.0 71.6

The FLOP-count results for the profile algorithms and for

SPARTA are very close to each other, for this problem; but the
CP and SUP timings are significantly lower with SKYPUL (and with
OLDPRO) than with SPARTA, so the profile methods appear to be
clear "winners" here.
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Figure 3.8 SPARTA Substructuring for the "Tower" Problem.
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3.6 The "Cross-cone" Problem

The finite element model for the "cross-cone" problem (shown
in Figure 3.9) has 864 elements (including 72 6-DOF axial "bar"
elements, 10 12-DOF beams, 46 18-DOF triangular plates, and 556
24-DOF quadrilateral plate elements), connected among 719 node
points with which a total of 3491 DOF are associated. Most of
these node points have six DOF; but some of them have only
five, a few have three, and some have none at all. The problem
is made somewhat more complex by the fact that some nodes
"share" some (but not necessarily all) of their DOE with other
nodes, taking advantage of a REXBAT modelling capability that
allows the analyst to simulate hinges, ball joints and certain
kinds of mechanisms. This DOF-sharing presents no special
difficulties to SPARTA. With 68 of the 3491 DOF "removed" by
virtue of the applied boundary conditions, there are 3423
"active" DOF in the equation system to be solved.

TABLE 3.11

SIZE, FLOP COUNT, AND TIMING RESULTS
FOR PROFILE SOLUTIONS OF THE CROSS-CONE PROBLEM

ITEM Case 1 Case 2
OLDPRO SKYPUL

Total No. ol DOF ................. 3491 3491
No. of "Act ive" DOF .............. 3423 3423
No. of Nonzero Stiffness Values . 113062 113062
Maximum Semibandwidth of A ....... 958 958
Average Semibandwidth of A ....... 117.0 117.0
Profile Area of A .................. 618039 618039
FLOPs for Factorization of A 57488804 57488804

Assembly ot the A Matrix:
CP Time [seconds] ............ 15.7 15.7
I/O rime ...... ................... 157.1 157.1
SUP inits........................... 180.2 180.2

FactoriztAtian of the A Matrix:
CP Time ...................... 157.9
I/O Time ...................... 85.6
S1P Unit .......................................... 249.6

Factori;jtion 4 So) vlnrg:
CP Time .............................. 326.0 161.1
1/r] Time ...... ................... 288.7 116.6
SUP Units ....... ................. 628.9 290.1
Avg. Cost (SUP/megaFLOP) ...... 10.9 5.1

Av~ q .-- 0.



Figure 3.9 Finite Element Model for the "Cross-Cone" Problem.



Here again, SKYPUL's superiority over OLDPRO is evident;
but the important results are the total CP, 1/0 and SUP times
for REXBAT assembly plus SKYPUL factorization and solution of
the equation system for this problem (176.8, 273.7 and 470.3,
respectively).

This configuration was treated by SPARTA in two ways: first
using all 684 elements in a single UGSE (Case 3), then breaking
the complete structure into two UGSEs (Case 4), as shown in
Figure 3.10. In this latter analysis, there were 182 elements
in UGSE number 1 (the conical part of the structure), and the
remaining 502 elements were in UGSE number 2. The
substructuring data, FLOP counts and timing results for these
two SPARTA analyses are given in Table 3.12.

TABLE 3.12

SPARTA RESULTS FOR THE CROSS-CONE PROBLEM

ITEM Case 3 Case 4

Number of elements in UGSE 1 ......... 684 182

Number of elements in UGSE 2 ......... - 502

No. of FLOP: to Factor the A Matrix ... 9417382 11110187
No. of Nonzeros for A Factorization ... 229605 248807

CP Time for "Analysis" [seconds] ..... 9.8 8.9
CP Time for "Factoring" . ............. 49.9 54.6
CP Time for "Solving" . ................... 1.4 4.2

Total CP Time for SPARTA Analysis .... 65.3 72.1
Total I/O Time for SPARTA ............ 414.9 511.3
Total SUP Units ........ .............. 503.1 604.7
Total I/O Operations .... ............... 10178 12439
Kilowords Transferred ..... .............. 4367 5412
Avg. Cost (SUP/megaFLOP) ............... 53.4 54.4
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The FLOP counts and CP timing results for both of these
SPARTA analyses are signifigantly better than with either of the
profile algorithms, but the I/O and total SUP results with
SKYPUL are clearly superior to those with SPARTA.

In the penultimate attempt to run Case 4 (with two UGSES), a
data error caused 15 elements that should have been in UGSE
number 1 to be assembled into UGSE number 2 instead; and the
SPARTA analysis with this inefficiently-ordered system required
more than 27 million FLOPS for the factorization and generated
CP and I/O charges of 137 and 1260 seconds, respectively, and
1440 SUP billing units.

3.7 Discussion

All of these analyses were conducted using single precision
arithmetic, with double-precision accumulation in the
inner-product routines used by OLDPRO and SPARTA (in the
machine-language coding). The "porch" and "cross-cone" problems
are not very well-conditioned and should have been treated with
double precision arithmetic throughout the analysis (on the
UNIVAC computer system, which has a 36-bit word size). Double
precision results obtained with OLDPRO are available but are not
reported her,: because a double precision version of SPARTA is
not available yet.

In all of the OLDPRO and SKYPUL analyses, the largest
submatrix block for the partitioned A matrix was limited to be
10000 words or less. Larger blocks would have resulted in less
I/O activity during the factorization of A for the larger
problems, at the cost of more core space. This is more true for
the OLDPRO implementation than for the SKYPUL system, since
SKYPUL already uses more submatrix blocks at any given time than
OLDPRO does.

All of the analyses conducted with SPARTA were done with a
version of the program in which the virtual memory simulator
(VMSYST) was an older version of the one described in [7], since
the improved version described there was not available yet. In
SPARTA, the VMSYST system had an 8960-word dedicated "buffer"
block, divided into 20 448-word pages [cf. 7]. A significantly
larger buffer space, with more 448-word pages or an appropriate
number of larger pages, would substantially decrease the amount
of I/O activity required in SPARTA for the larger problems.
Here, too, there would be additional costs associated with the
use of more core space to accomplish this.

Considering the question of core space, it is instructive to
note the core-space requirements for the three programs with
which these analyses were performed. The total sizes (including
the instructions and program-controlled data space) of OLDPRO,



SKYPUL and SPARTA for the four largest test problems are given
in Table 3.13. Here, it is apparent that SPARTA tends to
require much more core space than either of the profile methods
for the largest of these problems.

All of the SPARTA results reported herein were obtained with

the version of the program in which the minimum fill heuristic
is used in constructing the binary tree for ordering the
elimination of elements. Results obtained with the minimum
degree version of the program are not sufficiently-reliable to
be reported at this time.

TABLE 3.13

PROGRAM SIZES FOR THE LARGEST TEST PROBLEMS

Test Problem OLDPRO SKYPUL SPARTA

Gyro .. ........................ 44420 54271 44026

Porch .. ....................... 43903 - 44026
Tower ....................... 43754 55295 81808
Cross-Cone .................. 45341 57343 71056

Program sizes are given in 36-bit words
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SECTION 4

CONCLUSIONS AND RECOMMENDATIONS

The primary purpose of this investigation was to compare the
SPSYST generalized-wave-front sparse matrix algorithm with the
best available profile algorithms for treating large sparse,
symmetric linear equation systems of che type that are generated
in structural analysis problems. To accomplisn trils, a
convenient testing program (SPARTA) was developed; and a number
of test problems were analyzed with SPARTA (which uses the
SPSYST sparse matrix package) and with two profile algoritrims,
OLDPRO (in REXBAT) and SKYPUL.

The profile-method solutions, as might be expected, were
generally less-costly than those obtained with SPARTA for the
smaller problems; but for the most complex test problem (i.e.,
the "cross-cone" configuration), SPARTA was significantly faster
than both profile method programs (looKing at CP time) and 3ust
slightly more expensive (looking at the total processing costs)
because of t'e higher I/O requirements required for SPSYST
operations. These results are very encouraging, especially in
the ligit of the fact that SPARTA's I/O requirements would be
substantially reduced with a larger virtual-memory buffer space
than was used in these tests.

Previous work with SPSYST [51 indicated that the program's
performance might be noticeably improved through the
introduction of improvements in several areas. That work is
being carried out by Dr. John K. Reid at AERE Harwell, England,
and unfortunately was not completed in time for this study; so
the tests reported here were carried out with the older version
[I) of the program.

The SKYPUL profile routines proved to be highly-efficient
for the problems considered in this study. Some of this
efficiency results from the use of the PROM program as a
pre-processor in preparing the finite element models for
construction of the REXBAT and SKYPUL formats of the assembled A
matrices for these problems. Much of it, though, must be
attributed to the sophisticated use in SKYPUL of extensive
machine-language coding, an advantage that was not shared by
OLDPRO and SPARTA.

Notwithstanding this factor, it should be noted that the
profile programs proved to be much easier to use (from the
analyst's standpoint) than the SPARTA program, for some of the
problems treated here. The well-oiled machinery of these
extensively-used analysis tools permitted the analyst to use
them without a lot of head-scratching and preparation of

h I
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additional (super-element definition) data. With SPARTA, (n
other hand, several iterations were necessary (for tne 1i rje
problems) in order to ensure that the problem-dependent airayS
(the a priori size predictions of which were difficult, at best)
could be accommodated within the available core space.
Substructuring attempts that "looked good on paper" often, p roved
to be considerably less effective than expected, with t:,e best
results generally obtained through the use of only one
"user-generated super-element" (i.e., by letting SPSYST do all
of the work involved in determining the order in wnlch the
elements comprising A were to be treated). SPSYST also proved
to be somewhat "sensitive" to errors in the preparation of
substructuring data, giving substantially higher FLOP counts and
execution costs in two of these test problems when only one
element (in one case) or a small group of elements (in tne other
case) were inadvertently assigned to the wrong substructures.

From various experiences gained in this study, the following
additional observations and recommendations are appropriate:

1. The SPARTA program, which accepts externally-generated
element data (i.e., stiffness matrices and their associated
variable lists) presented to it in a convenient form, can be
used in conjunction with a variety of general-purpose
structural analysis programs and will be of considerable use
in future research studies and for production applications
of the SPSYST algorithm.

2. The improved SPSYST routines under development at AERE
Harwell should be substituted for the present ones in SPARTA
as soon as they are available.

3. A double precision arithmetic version of the improved SPSYST
should be implemented in SPARTA at the earliest opportunity.

4. The set of test problems considered in this study should be
expanded to include some that are more complex than the
present ones, and to include some with which the "SAME"
interfacing capabilities of SPSYST can be exercised more
meaningfully than in the present study.

5. Tests should be conducted with the improved VMSYST virtual
memory simulation program, and using larger VMSYST buffer

.4[ spaces and more pages than were used in the present study.

6. Programs, like SPARTA, that use SPSYST would benefit greatly
from the availability (as output from an SPSYST
pre-processing routine) of accurate core-space requirement
data. This would facilitate the more efficient utilization
by the host program of expensive core-space resources.
Analysts would also appreciate the benefits of more
meaningful diagnostic messages from SPSYST.



7. Some SPSYST operations would be performed significantly Ior(

efficiently with selective use of assembly-language coding
instead of FORTRAN in a few key locations in the program.
This violates the spirit and intent of code-portability, of
course; but if these "key locations" can be effectively
isolated and insulated, there should be no seriour

objections to the use of machine-dependent coding in tri_>
few places (in production versions of the program but not
necessarily in the research and development versions).

8. SPSYST's performance, especially in the most complex problem
considered here, was encouragingly good. With tne
additional gains anticipated from the program improvements
being introduced at AERE Harwell and with the use of larger
buffer spaces in the improved version of VMSYST, it is not
unreasonable to expect that SPSYST can be the nucleus of an
effective and robust tool for structural analysis
applications. It looks especially promising for use with
problems in which repeated "number crunchings" are performed
with topologically-invarient equation systems (e.g., in the
extraction of many eigensolutions for complex structural
configurations).
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STRUCTURAL OPTIMIZATIO1 STUDY

Paul S. Jensen

W. A. Loden

ABSTKACT

An optimization algorithm based on augmented Lagrangians is

described. It is implemented with a selection of several popu-
lar low rank metric update procedures. Step lengths are deter-
mined by line searches using quadratic interpolation in order to

avoid excessive gradient evaluations. Penalty weights are
formed as simple arithmetic or geometric progressions. Test re-
sults and parameter studies are given for well known constrained

and unconstrained problems.

-65-



TA~BLE OF CONTENTS

1. INTRODUCTION............................... 67

2. METHOD...................................... 67
2.1 CONSTRAINTS.............................. 68
2.2 STEP DIRECTIONS.......................... 68
2.3 STEP LENGTH.............................. 69

3. TESTS....................................... 69

4. PA~GING POLICY.............................. 18

ACKNOWLEDGEMENTS..................................... 75

REFERENCES........................................... 75

-66-



1. INTRODUCTION

This study was conducted as a supplementary effort to a gen-

eral investigation [1] relating to the optimization of the buck-
ling loads for reinforced structural panels. The original
study, reported in (1), included three efforts related to struc-
tural optimization, namely:

1. Organize and link appropriate structural analysis com-

puter programs into a system suitable for carrying out
structural optimization,

2. Incorporate a convenient optimizer (optimization pro-
gram) in the system to facilitate the optimization pro-

cess and

3. Investigate other optimization algorithms that are su-

itable for structural analysis.

The optimizer used in 2. was CONMIii [6], which is based on a

method of feasible directions. CONMIN has been been extensively
used for structural optimization and is in a robust, finely
tuned state of development. Its primary shortcoming is the fact
that the algorthm used does not incorporate any of the innova-
tions developed during the last decade for constrained optimiza-
tion. Thus, its operational efficiency can probably be im-
proved. In part 3. above, an adaptive algorithm based on the
method of augmented Lagrangians was formulated and partially im-
plemented. The implementation of that new algorithm was called
ALMIN (Adaptive Lagrange MIimization).

The objective of this effort was to complete the implementa-

tion of ALMIN and evaluate it. The algorithms used in ALMIi4 are

briefly discussed in the following section. For a more detailed
description, see [1]. Test results and conclusions are present-
ed in Secs. 3 and 4.

2. METHOD

There are three major aspects that contribute to the design
of any NLP (Nonlinear Programming) algorithm, namely;

1. The enforcement of the constraint conditions,

2. The selection of step directions for modifying the de-
sign variables and

3. Determination of the step magnitudes.

A fourth aspect of key importance to the structural analysis ap-

plication is the technique used to obtain gradients of the ob-
jective and constraint functions. This aspect is not addressed
either in the design of ALMIN or the study presented here.
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2.1 CONSTRAItNTS

We focus on two general techniques for handling constraints.

The method of feasible directions, that dates back to the

1950's, attempts to insure that each step (value assigned to the

set of design variables) satisfies all of the constraints. The
more recent augmented Lagrancian method transforms the constra-
ined optimization problem into a series of unconstrained ones by
augmenting the Lagrangian objective function with a penalty

function of Lhe constraints. ALMJN (Adaptive Lagrangian 1-1 aim-
izer) uses the latter method.

The augmented Lagrangian approach permits steps that may not

satisfy all of the constraints, but produces a penalty value in

the augmented objective function that tends to drive subsequent

steps back towards the feasible region. The heuristic used pro-
duces a mild penalty for the early steps and gradually increases
it as the process continues. Unfortunately, if a large number

of steps are taken, the objective function can become dominated

by the penalty function part of the augmented objective func-

tion, occasionally causing convergence to an incorrect result.

There have been some promising developments in the control

of the penalty functions recently [2,5], but these have not been

incorporated in ALMIN. The heuristic used in ALMIr4 simply takes

an initial scalar penalty weighting factor and multiplies it by

a constant (typically 2) each step until it reaches a preset
limit.

2.2 STEP DIRECTIONS

In contrast to the complexity of choosing a feasible step

direction, as required by the feasible directions method, a sim-

ple linearization approach suitable for unconstrained optimiza-

tion is used for Lagrangian methods. This approach is charac-
terized by the affine approximation

g' 9 g + H(x'-x),

where the design variable vector is given at two points x and

x', and g and g' are the corresponding gradients of the AOF

(augmented objective function), see [3] for example. Matrix H
is typically an approximation to the Hessian of the AOF. Since
the gradient is zero at the optimum point, we have

-i
s = (x'-x) H g

for the choice of step direction.

Since there is no way of producing the Hessian directly for

the structural optimization problem, it is approximated by means
of the iterates (values of the design variable vector) produced

during the optimization process. Starting with H = 1, the iden-

tity matrix, each successive approximate inver Hessian is

formed by a rank two, variable metric update of thu previous ap-
proximate. The particular update formulas implemented in ALMI.
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1. DFP (Davidon-Fletcher-Powell),
2. BFS (Broyden-Fletcher-Shanno),
3. FS (Fletcher switch) and
4. OS (Oren-Spedicato).

It has been found advisable to occasionally reset H I ! dur-

ing the optimization process. The test results in Sec. 3 in-

clude parameter studies on the effects of variations in the fre-
quency of resetting H. Emperical results indicate that H should
be reset about every 2r iteration steps, where n is the number
of design variables.

2.3 STEP LENGTH

Having determined a step direction for modifying the design

variable vector, the length of the step to be made must be esta-

blished. This is determined by searching for a point that min-
imizes the AOF (augmented objective function) in the chosen di-

rection. Since gradients of the AOF are so costly to obtain in

structural optimization, the search method used requires only
values of the AOF at intermediate points. Specifically, the

rather complex sequence of quadratic interpolation polynomials
described in (51 is used for the linear search.

There are controversial opinions regarding how completely

the linear searches need to be carried out. Since it is quite
expensive and the step direction is only a crude estimate any-

way, many authors recommend a cursory linear search. It has

been this authors experience that, unless the linear searches
are done quite well, the total number of steps required tends to
be disproportionately large.

3. TESTS

In order to gain insight into the behavior of the two algor-

ithms (feasible directions and augmented Lagrangians) under

study here, a fairly simple constrained optimization problem
called the HBR (Hunch Back t<hinoceros) problem was studied in

some detail. The name is derived from the shape of the feasible

region shown in Fig. 1. The optimum point is at the tip of the
"horn" (1,0).
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A Lagrange multiplier of -1/7 produces a stationary point of at-

traction at the maximum (-1,0), which confused the augmented La-

grangian algorithm until a test for the sign of the multiplier
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wdIs included to avoid convergence there. The convergence tra-
jectories produced by the two algorithms are also shown in
Fig. 1, illustrating behavior typical of many problems.

i.ie remaining test problems used in this study were taken
from the broad collection treated by Pierre and Lowe [5].
Specifically, tests were run on the following:

Unconstrained Set

TI: kosenbrock Banana Function,
T2: Wood Four Variable Function and
T3: Powell's Four Variable Function.

Constrained Set

T7: Pierre's Around the World Problem,
T12: Beale's Three Variable Problem,
T13: Powell's Five Variable Problem and
T17: rockafellar's Two Variable Problem.

The designators Ti, i = 1,2, ... , are exactly those used in [5].

Unconstrained Problem

The three standard unconstrained problems Tl,T2 and T3 were
run in orde. to assess the operation of the code independent of
the the penalty function aspect. Convergence was achieved in
all three cases with performance somewhat poorer than has ap-
peared in the literature, e.g., [3]. This is possibly due to
ALMI'S special linear search algorithm that avoids the use of
gradients.

These tests were run using the DFP update formula and vary-
ing the number of linear searches that were carried out between
each initialization of the approximate inverse Hessian. The in-
itial Hessian was always taken to be the identity matrix.
Specific results for these problems appear in Tables 1 - 3.
Entries marked with * did not converge before a preset iteration
limit was reached.

The results appear to suggest that the number of searches

per initialization should be about twice the number of variables
in the problem. Fortunately, however, this does not appear to

A .be a sensitive parameter.
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TABLE 3.1 RESULTS FOR Ti, ROSENBROCK BANANA FUNCTIONI
Min. f = 100(y - x )+ (I1 x
Start (-1.2,1)

Searches per Total No. of Total No. of
Run Hessian Searches Function

Initial ization Evaluations

1 2 24 107
2 3 35 175
3 4 36 161
4 5 34 135
5 6 34 138
6 10 36 148

TABLE 3.2 RESULTS FOR T2, WOOD'S FOUR VARIABLE FUNCTION
2 2 2

Min. f =100(x - w )+ (1 - w)
2 2 2

+ 90(z -y) + (1- Y)
2 2

+ 10.l((x -1) + (z - 1)
+ 19.8(x -1) (z - 1)

Start at -(3,1,3,1)

Searches per Total No. of Total No. of
Run Hessian Searches Function

Initial ization Evaluations

1 2 125 500 *
2 3 145 500 *
3 4 ill 500 *
4 5 90 381
5 6 80 323
6 10 76 301

TABLE 3.3 RESULTS FOR T3, POWELL'S FOUR VARIABLE FUNCTION
2 2

Min. f =(w + lOx) + 5(y - z)
4 4

+ (x - 2y) +- 10(w - z)

Start at (3,-1,0,1)

Searches per Total No. of Total No. of
Run Hessian Searches Function

Initialization Evaluations

1 2 43 150*
2 3 37 130
3 4 19 66
4 5 18 62
5 6 16 61
6 9 20 71
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Constrained Problem

The same parameter studies carried out for the unconstrained
problems were applied to the constrained ones. Superimposed on
these, however, were a number of experiments with the penalty
weight functions.

For Pierre's problem T7, the default heuristic of simply
doubling the penalty weight each iteration caused convergence to
the wrong solution (see the discussion in Sec. 2.1). The
heuristic that was used to generate the results in Table 3.4 was
to start with w = .1 and simply increment it by .1 each
iteration.

The rest of the problems presented here were solved witn no
particular difficulty using the default heuristic described
above.

TABLE 3.4 RESULTS FOR T7, PIERRE'S AROUND THE WORLD PROBLEM
2 2 2

Max. y subject to x + y + z = 1 and
2y - x < 1

Start at (-.1,-l,.l)

Searches per Total No. of Total No. of
Run Hessian Searches Function

Initialization Evaluations

1 2 25 81

2 3 19 65
3 4 22 70
4 5 24 80
5 6 23 77
6 10 31 114

TABLE 3.5 RESULTS FOR T12, BEAL'S THREE VARIABLE PROBLEM
Max. f = 8x+6y+4z-2xx-2yy-zz-2xy-2xz-9
Subject to x+y+2z _<, 3 and x, y, z > 0
Start at (.5, .5, .5)

Searches per Tp' 1 No. of Total No. of
Run Hessian .rches Function

Initialization Evaluations

1 2 6 19
2 3 5 15
3 4 5 15
4 9 5 15
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TABLE 3.6 RESULTS FOR T13, POWELL'S FIVE VARIABLE PROBLEM
Min. f = vwxyz
Subject to: wx - 5yz = 0

3 3
v + w =-I and

2 2 2 2 2
v + W + x + y + z = 10.

Searches per rotal ,jo. ot Iot l , o . 01
Run Hessian Searches Function

Initialization Evaluations

1 2 6 14
2 3 6 20
3 4 5 12
4 5 5 11

10 5 11

TABLE 3.7 RESULTS FOR T17, ROCKAFELLAR'S TWO VARIABLE
PROBLEM

4
Max. f = y - x - xy subject to y = 0
Start at (.5, .5)

Searches per Total No. of Total No. of
Run Hessian Searches Function

Initialization Evaluations

1 2 10 35
2 3 8 29
3 4 10 42
4 5 9 32

5 6 7 24

6 10 10 36

Results for most of these problems were also obtained using
the feasible lirections algorithm implemented in CO4MI i. These
are summarized in Table 3.8 with typical results from ALMI., for
comparison.

TABLE 3.8 CONMIN RESULTS WITH COMPARATIVE ALMIN RESULTS

Problem HaR Tl T2 T3 T7 T12

Function Evaluations
CONMIN 182 150 234 317 127 127
ALMI;4 114 135 301 62 70 15

Gradient Evaluations
CONMIJ 60 27 42 50 39 40
ALMIN 29 34 76 18 22 5
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4. CONCLUSIONS

An implementation of ALMIN was completed and a variety of
test problems were run. Although operational, the new algorithm
is not suitable for production applications in its current form.
A number of critical decision processes are presently carried
out using ad hoc heuristics that are neither reliable nor always
efficient. Examples of these decision processes are: (1) When
to reinitialize the approximate Hessian matrix, (2) What
technique to use for increasing the penalty function weights and
(3) How to approximate the gradient functions.

Our general feeling is that a number of avenues for
considerably improving upon the present technique exist and,
because of the substantial analysis costs involved, they should
be pursued. Some specific areas of interest are:

1. Careful attention to the finite difference techniques
used to approximate the gradients of the constraint and
objective functions must be given,

2. Innovative utilization of the information available
from the structural analyzer (that is not typically
used by optimizers) must be found. An example of such
information is the eigenvector associated with the
buckling load (an eigenvlaue).

3. Incorporation of recent ideas that exploit the
properties of the trajectories of penalty and barrier
function methods to overcome the problems associated
with the penalty weights, see [41 for example.
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